Subscribe via E-mail

Your email:

HVAC Challenges

Follow Me

Current Articles | RSS Feed RSS Feed

ZIP Economizer Firmware Update


Belimo has recently updated the ZIP Economizer firmware (version 1.10.00). The new features include:

  • Latest Codes & Standards – CA Title 24: 2013Belimo ZIP Economizer
    Ensured all climate zones reflect new High Limit Changeover and displaying the changeover strategy per accordance with T24.
  • Automatic Damper Scaling Upon Setup
    Upon setup, the ZIP Economizer will automatically re-span the control signal range if the actual damper mechanical stroke angle is less than 90°.
  • Expanded Heat Pump Functionality
    Easier and quicker Heat Pump setup and configuration.
  • Alarm Counter
    Multiple occurrences of alarms are kept track with an alarm counter located at the bottom of the screen.
  • Alarm Time Stamp
    Alarm messages will show how long ago the alarm occurred.
  • Resettable Operation Hours
    Ensures consistency for service and repairs by resetting operation hours based on season, repairs, or energy bill periods.
  • Expanded Help Text
    Additional several help text messages with details to ensure assistance every step of the way.

Learn more about the ZIP Economizer online at

A Method of Damper Control for Corridor Ventilation and Smoke Extraction



Corridors are typically a means of egress during fires or emergency events. During normal operation they require ventilation. In some code jurisdictions or building design requirements, pressurization or smoke extraction is also required.

This article presents several means to provide pressurization or smoke extraction with ventilation and details the operation of the controls, dampers, and actuators.

The operation of corridor smoke exhaust influences and is influenced by the other smoke control tactics in a fire and the fire protection and mechanical engineers model the airflows with respect to one another. Figure 1 shows a larger picture than just the corridors.

Fiqure 1 Elements in fire and smoke controlFiqure 1: Some of the strategic elements in fire and smoke control.

The model codes used in the United States and some other countries – International Building Code ((IBC 2012) and the International Fire Code (IFC 2012) along with the International Mechanical Code (IMC 2012) have various requirements for corridors in commercial buildings. The walls must be constructed as smoke partitions and in some cases as fire partitions. Minimum widths are established. Mechanical ventilation, travel distances, and other requirements are also covered. Chapter 4 of the IBC establishes requirements based on occupancy type. Chapter 7 details the requirements with respect to structure. Chapter 9 details the active or engineered system

All smoke control equipment status must be indicated on the fire-fighter’s smoke control system (FSCS) panel. This includes smoke control dampers (IFC 909.16.1). Control of all smoke control equipment must be possible from the FSCS (IFC 909.16.2) with the exception of complex systems where other provisions are allowed.

Smoke Extraction
In corridors there are jurisdictions and individual projects where corridor damper and fan systems are required to clear the corridor of smoke and prevent spread to adjacent floors. Since ventilation is also required, the two functions must be coordinated. This can be achieved with dedicated or common (non-dedicated) equipment.

Either a “sandwich” or “building” pressurization type of approach is usually used. See Figure 2.

In a sandwich pressurization system –

a) The corridors on the fire floor are negative with the fan pulling smoke out of the floor. (Supply closed, return or exhaust open fully.)

b) The floors above and below the fire floor are pressurized more than other floors. (Supply fully open, exhaust off or closed.)

c) The corridors on other floors of the building operate normally. (Typically partially open supplies and exhausts.)

In a building pressurization system approach –
a) The corridors on the fire floor are negative with the fan pulling smoke out of the floor.

b) All other floors operate normally. They are under a positive pressure with ventilation air. Since the fire floor is very negative, the difference in pressure is large enough to prevent smoke spread to the non-fire floors.

BuildingSystem resized 600

Figure 2: “Building” vs. “sandwich” pressurization system.

Figure 2, shows the overall concept of a non-dedicated system – the ducts move ventilation air under normal circumstances and are used for smoke control only in an emergency. However, variations are common in corridor systems as there are a number of ways to achieve the goals. Among the possible methods are:

a) Two rooftop fans (supply and exhaust) and separate ducts to the corridors.

b) One reversible fan that delivers ventilation air in normal operation and exhausts air during an event. In this case there are other provisions for make-up air, reliefs or local exhausts. Various factors influence the approach that is best. All pressures – positive or negative – due to stack effect; lobbies, elevators, or natural ventilation, or attached rooms and spaces are considered.

c)  If there is sufficient make-up air elsewhere, an exhaust fan alone may be used to move air out of the corridor. No supply fan.

See Figures 3 and 4 for drawings of the two approaches. Figure 5 shows a vertical representation of a high-rise corridor duct system in a multistory building. The point is that the same duct feeds or draws from all of the dampers. The system must be balanced in order to provide the correct amount of ventilation air on each floor. When a fire event occurs, the air flow requirements change.


Figure 3: Separate supply and exhaust ducts in a corridor.

Figure 4

Figure 4: Single duct serves as supply and smoke exhaust in a corridor.

Figure 5

Figure 5: Fan and ducts in 10 story building.

The pressure at the discharge of the fan is higher than at the bottom of the building. However, the required quantity of air going through each damper is the same during normal operation.

The damper at the top of the building will be open much less than that at the bottom of the building. Even with careful calculations to use different sizes of dampers, balancing will be needed to get the correct flow through each damper. In addition to pressure losses in the duct and across the dampers, local exhausts and some stack effect will cause variations that cannot be precisely calculated. The goal will be to have the furthest damper full open to use the least fan energy while delivering the right amount of ventilation air on every floor.

The fan sequence for each of the cases above is straightforward. With the Figure 3 two duct system both the ventilation supply fan and exhaust fan are on when occupied (or optimizing or under control of an air quality sensor). If a fire alarm activates or smoke is detected during unoccupied periods, the fans are turned on again. This is the same for both sandwich and pressurization systems. At the same time the stairwell pressurization system is activated and alarms are issued. This is beyond the scope of this article.

If using the Figure 4 geometry, then the fan is on and supplying air during normal occupied times. In event of a fire, the fan goes to the reverse air flow direction – exhaust mode.

Any individual damper in either type of system must perform several functions. These dampers can be parallel blade (PB) or opposed blade (OB). In most cases an OB will have more accurate resolution for setting minimum position and full open the flow is the same for either type.

The dampers must be UL 555S (UL 555S) listed as smoke dampers (IFC 909.10.4). In some cases the damper must also be a fire damper that meets UL 555 (UL 555) as well so combination fire and smoke dampers would be required. Most corridor walls must be fire rated. However, if the fire damper function could interfere with the smoke control system operation, then installation of a fire damper is not required (IBC 717.2.1).

The actuated damper operation will be similar for all cases. Here we will discuss the detailed operation for only the Figure 3 supply and return duct case in a sandwich pressurization system.

Normal operation. Both supply and exhaust dampers open to a minimum position. Balancing dampers in series with the smoke control dampers cannot be used. They would block some flow when the damper went to 100%.

In event of a fire:

Fire floor
a) Supply damper closes so that smoke is not pushed into other areas.

b) Exhaust damper opens 100% to remove smoke.

c) In some cases the dampers are also fire dampers and will close if temperature inside damper frame reaches 165°F. The FSCS panel has override switches to reopen the damper with a secondary sensor to again close damper if the temperature reaches 250°F. This is discussed below.

Floors immediately adjacent to fire floor
a) Supply damper opens 100% to pressurize and restrict smoke entry

b) Exhaust damper closes 100%

All other floors
a) Dampers remain in normal operation

b) Variations do exist

Belimo FSAF24-BAL Solution
Figure 6 shows a corridor damper with the FSAF24-BAL. Several manufacturers produce similar products. Not shown is the front grill. The damper is installed in the corridor wall and the actuator provides the sequence needed for ventilation and smoke control. The actuator is three position – closed, adjustable mid-position, or open 100%. Figure 7 shows operation.


Figure 6: Ruskin FSD60-FA-BAL

Fire and Smoke Damper


With no power the actuator springs closed – unoccupied, fire present at damper, or smoke control stop air flow.

With 24V on wire 2, the actuator opens to the balancing position as set by the potentiometer on the face – this is the normal operation ventilation air position. Each actuator is set at a different potentiometer position as balancer measures flow.

When wire 3 receives 24V the actuator opens 100%. – full pressurization or smoke exhaust mode.

These are the positions needed for the corridor ventilation and smoke control.

Figure 7

Figure 7: Detail of FSAF24-BAL.

Smoke control system program mapped to actuator function

The sequence detailed above under dampers can be mapped against the needed actuator operation and programmed into the smoke control system panel as shown below.

Normal operation:  Wire 2 is powered, damper in ventilation position.

Fire floor
a) Supply damper:   No power, damper closes.
b) Exhaust damper:   Wire 3 powered to open damper 100%.
c) For fire dampers Wire 1, common, is always connected unless the primary sensor opens. See Figure 8 description.

Floor(s) immediately adjacent to fire floor
a) Supply damper:  Wire 3 powered to open damper.
b) Exhaust damper:  No power, damper closes.

All other floors
:  Wire 2 is powered.

Figure 8, adds more detail to how the damper is controlled. (Note that there are other wiring variations not covered here. For example the secondary sensor could be between the Override relay and wire 3.) A smoke damper would have neither the 165°F high temperature primary sensor nor the 250°F secondary senor.

Figure 8

Figure 8: Control of FSAF24-BAL-S actuator.

In Figure 8 the smoke relay is normally closed and power is delivered to the actuator. The damper drives to the minimum position setting.

Combination fire and smoke dampers have two t”emperature sensors (“heat responsive devices” per UL555) – primary and secondary. If the temperature rises to 165°F (74°C) the primary opens and the damper springs closed. It does not go to the potentiometer position since it does not have power. If the Override relay is made by intervention from the FSCS panel then wire 3 is energized. This bypasses the primary sensor. The damper then opens to the 100% position instead of the ventilation position.

If the temperature at the damper again rises and reaches 250°F (121°C), then the secondary sensor opens and damper springs closed and stays closed until manually reset.

To summarize:

By powering wires 1 and 2 with 24V the actuator drives the damper to the required position for ventilation.

By cutting power the actuator springs the damper closed.

By powering wires 1and 3 the actuator drives the damper 100% open regardless whether wire 2 has power or not.

Figure 9, shows the Fire Fighters’ Smoke Control System panel with indication lights that are given status by the auxiliary switches on the actuator. Each fan and damper has its own status lights and override switch. The signals for light indication at the panel are carried via the network from actuator auxiliary switches, damper blade switches, magnetic contact switches, or programmable actuator signals.

Exhaust Damper

Figure 9: Portion of Fire Fighters’ Smoke Control Panel.

Proportional actuator with Minimum position control

Another way to achieve the same sequence is provided by use of a proportional 2-10V actuator and an SGA24 minimum position switch.  This is a different actuator than the BAL shown above. It is a standard 2-10VDC control actuator.

The wiring schematic is shown in Figure 10. Figure 11 shows the minimum selector which can be used to set the mid-point balancing position of the actuator.

Figure 10

Figure 10: Proportional actuator controlled by minimum potentiometer.




Figure 11: Proportional minimum potentiometer




The sequence of operation of the wiring diagram in Figure 10 is as follows:

With no power on both Com and Hot, damper springs closed. This would be the typical unoccupied position. The “closed” auxiliary switch indicates the damper is closed and the network card transfers the position indication to the FSCS panel.

With power going to the SGA24 and actuator, the signal out of the SGA on 3 goes to the actuator input 3. (4 is not used in this sequence. It would allow modulating control of the damper in addition.) The 2-10 VDC signal positions the actuator and damper from zero to 90 degrees to be set by the balancing contractor.

If Override relay 1 makes 24V power is delivered to 3 of the actuator which causes it to drive full open. At the same time the 165°F sensor is bypassed. (The 250°F remains in the circuit as a final safety should fire be present too close to the wall.) This would open the damper fully if it is an exhaust on the fire floor or a supply on an adjacent floor.

If Override relay 2 makes, power is cut to 2 of the actuator and it springs closed. This would achieve needed closure of a supply on the fire floor or an exhaust on an adjacent floor in a sandwich pressurization system.

Thus the damper can be placed in closed, open, or partially open as needed for corridor smoke and ventilation control.

Figure 10 shows the primary and secondary sensors for a combination fire and smoke damper along with the override contact on Override relay 1. These are not present if the wall is not a fire barrier or partition requiring a damper. In that case the drawing in Figure 12 would accomplish the smoke damper functions for ventilation or open or closed as required. This is one example where the presence of sprinklers (that might derate the wall) works synergistically with the engineered smoke control system.

In Figure 12, when both relays are normal, the damper goes to its balancing position.

If the damper must open 100% for purge or pressurization, then Override relay 1 is made. Shorting hot to 3 of the actuator drives it full open.

If the damper must close then Override relay 2 makes. This cuts power and the actuator springs closed.

As in Figure 10, actuator auxiliary switches signal damper blade position to the FSCS panel.

Figure 12

Figure 12: Proportional control of a smoke damper by a minimum potentiometer.

Reversible Fan Ventilation and Smoke Removal

Where there is sufficient relief by local exhausts or return airs in adjacent areas, a reversible fan and only one duct run to all floors is possible. In some cases, a make-up air damper can provide for needed relief. A gravity relief damper is another possibility. This removes the need for a second duct and second damper on each floor. Figure 13 shows the concept.

Figure 13

Figure 13 Reversible fan for ventilation or smoke extraction as needed


A sandwich or building pressurization system approach can be used for corridor smoke control to facilitate egress during a fire or other event. The same duct(s) and damper(s) can be used for ventilation during normal occupancy periods.

There are a number of duct and damper choices available for corridor ventilation and smoke extraction. The Belimo FSAF24-BAL or the FSAFB24-SR with an SGA potentiometer can provide the different sequences of operation needed.


International Building Code, 2012, International Code Council, Inc. (ICC), Country Club Hills, IL 60478-5795

International Fire Code 2012, ICC, ibid.

International Mechanical Code 2012, ICC, op. cit

UL 555 Standard for Safety for Fire Dampers, Edition 7, 2006, Updated 2010, Underwriters Laboratories Inc. (UL), 333 Pfingsten Road, Northbrook, IL 60062-2096

UL 555S Standard for Safety for Smoke Dampers, 4th Edition, 1999, Updated 2012, ibid.


Written by: Larry Felker, Mechanical Engineer and member of ICC (International Code Council), NFPA (National Fire Protection Association), and a life member of ASHRAE (American Society of Heating, Refrigeration Air Conditioning Engineers). He is a Product Manager for Fire & Smoke Actuators for Belimo Americas who has specialized in fire and smoke dampers and actuators since 2002. Previously he was a temperature control system designer and before that a mechanical and electrical contractor. He is the co-author (with Travis Felker) of Dampers and Airflow Control, ASHRAE Special Publications, 2010.

Balanced Climate Control - An Easy and Efficient Way


In recent years, sustainability and efficiency have made their way to the forefront of building design.  More so now than ever, owners and contractors are looking to take advantage of the most advanced climate control systems in an effort to lower energy costs, maximize space, and ensure the safe and comfortable use of their structure for many years to come.

The use of chilled beams, in particular, has become a highly popular method of achieving these goals. Originally built to take the place of passive radiant cooling ceiling systems, they provide designers and engineers with the ability to make the most out of their space by replacing bulky supply and return air ductwork with smaller and more efficient chilled water pipes.

Chilled beams are an intelligent option for both new buildings and retrofits alike; and when used in conjunction with other state-of-the-art mechanical technologies like Belimo’s 6-way Characterized Control Valve (CCV), they help simplify an otherwise complex piping arrangement, reduce costs and improve climate-controlling capabilities in structures of nearly all shapes and sizes. 

The Belimo 6-way CCV is designed specifically for chilled beams and radiant ceilings. It canBelimo 6-way Characterized Control Valve perform change over and modulating control for a single coil in a 4-pipe system and with functionality equivalent to that of up to four 2-way control valves, it produces significant savings in terms of space, material, and installation time.

Belimo 6-way CCV’s innovative ball design features hydraulically decoupled heating and cooling circuits, which means that each sequence is controlled individually by the rotary movement of a single actuator. As a result, one valve can support a coil with two different Cv values.

In addition to substantially reducing wiring requirements, the use of only one actuator simplifies installation, saves time thus reducing labor costs. Building sectors where lean construction is becoming increasingly important, this is highly advantageous.  The 6-way valve is also highly compact and bubble-tight in the closed position, helping prevent unnecessary energy losses and reducing operating costs.

Belimo 6-way Valve CutawayThrough all of its innovative features, the Belimo 6-way Control Valve can serve as a highly economical addition to chilled beam applications in a wide range of building designs, and as more and more owners and contractors look for new and effective ways to cut costs and improve the environmental-friendliness of their structure, technologies like it will become increasingly prominent. 

Why Economizing Makes Sense


Energy usage typically represents a significant portion of a company’s total operating costs, and in a day and age when sustainability and efficiency are at the forefront of industrial design, the demand for innovative products and methodologies that can cut energy expenditures is becoming increasingly prominent.

Economizing provides a wide range of energy-related benefits and with a number of recent technological advances in the design of economizers over the past few years, they are becoming one of the fastest growing ways to achieve reliable savings.

Airside economizers, in particular, aren’t just one of the most effective ways to reduce operating costs; they’re a requirement in many commercial HVAC systems throughout the United States. They also fulfill another important Indoor Air Quality (IAQ) requirement by providing the correct ratio of outside air to return air.

Until recently, most economizing solutions left a great deal of room for error. Many studies showed that while some economizers frequently experienced a wide range of mechanical issues, others simply didn’t have the capability of delivering the level of energy savings that they claimed to provide. Also, because of their complexity, many economizers presented installation complications; further reducing their ability to effectively cut energy costs.

This, however, is quickly changing as many economizers can now be customized to handle HVAC applications in specific geographical regions. Instead of offering an all-in-one solution, these products now take into account the natural climate of the location that they are being utilized in.

One of these products is Belimo’s ZIP Economizer and unlike other models that take a great deal of time and effort to setup, it can be programmed in less than a minute. Equipped with all relevant climate zone and energy code data already built in, the ZIP economizer requires only the entry of a zip code. After that, a building’s HVAC operations are automatically optimized and energy savings can be maximized with minimal interaction from the user. In addition, through use of various state and federal rebate programs, many utility providers will pay the cost of installing an economizer, which further increases their feasibility. Other benefits associated with Belimo’s ZIP Economizer can been viewed online.

For more information on Belimo’s ZIP Economizer or any more of their products, you can visit their website at or call them toll free at 1-800-543-9038.

How to Save Energy with Economizing


Airside economizing has become one of the quickest and most efficient routes to reliable energy savings and improved indoor air quality. In addition to reduced power costs resulting from increased HVAC system efficiency, owners and operators that utilize airside economizers often have the opportunity to further increase savings by taking advantage of a number of federal, state and local energy rebates and incentives. Belimo ZIP Economizer

In this 30 minute recorded webinar, you will learn how to get efficiency strategies back on track with easy setup, automatic code change over temperatures, and superior troubleshooting capability. You will understand how you can instantly know when failures occur and how to quickly pinpoint and address any problems.

Click on this this link to listen to the recorded webinar along with session on questions and answers.

Video on Advanced Valve Control Strategies


In this 30 minute video, you will learn the ways that the Belimo Energy Valve's features Flow Control and Power Control can produce more stable control.  Discover the hydronic advantages of Flow Control, which makes the valve pressure independent and the system dynamically balanced.  Then learn about Power Control, which allows the valve and the coil to function as a single device which is pressure and temperature independent.

Belimo's ZIP Economizer was Chosen as Money-Saving Product


BUILDINGS magazine has selected the ZIP Economizer as a 2014 Money-Saving Product winner. Belimo is part of an elite group of 97 products showcased in the magazine’s June 2014 issue.

Finalists were evaluated by the BUILDINGS editorial staff for the money-saving qualities theyZIP Economizer offer to building owners and facility managers in areas such as energy consumption, water savings, lighting, envelope improvement, and maintenance.

To view the full list of 2014 winners, visit Buildings magazine or look in the June issue of Buildings magazine.

BUILDINGS magazine serves over 74,000 commercial building owners and facilities management professionals in North America. The monthly publication helps readers make smarter decisions relevant to the management, modernization, and operation of their facilities. 

Learn more about the ZIP Economizer.

Energy Valve Proves Air Coils are Batting a Thousand


When sports fans crave game highlights or need to check the latest stats and ranking for their favorite teams, they turn to this large sports entertainment complex. This cable channel has been providing sports news and programming for more than 30 years. What started as one cable channel three decades ago is now a multimedia giant, with several sports channels televised in more than 200 countries.

In July 2013, Belimo turned to this large sports entertainment complex when it needed to check some important stats, but these numbers had nothing to do with RBI’s or yards passing. The manufacturer brought its Belimo Energy Valves to see how they would perform on a 700 acre campus.

The sprawling campus is home to several buildings with sophisticated HVAC mechanical systems. The buildings, which house the offices, radio stations, and broadcast studios, served as the perfect location to install the Belimo Energy Valve. The Energy Valve is a complete package including characterized control valve, BTU meter, and intelligent actuator with patented Delta T Manager™, on-board data storage and network integration capabilities. The Energy Valve package is easily installed and the sensor data used for the Energy Valve process logic can be also used for data acquisition purposes. The data can be used live, or stored in the actuator for later use. The data can be used to provide important and meaningful insights into the operation of a hydronic system. The Energy Valves rich data array and storage capability complements and unburdens the typical DDC system. What Belimo was able to find was a home run for their flagship valve product. 

Keeping Score 

According to this sports entertainment complex, its 18 building main campus is the company’s “mother ship,” employing close to 4,000 people. It’s the job of these employees to keep this 24/7 sports channel running. The buildings on campus are also an important factor. They need the most efficient and reliable mechanical systems in order for the show to go on. That is why Belimo chose this facility to install its Energy Valves. “We thought this facility would be a great site to show the strength of the Energy Valve in multiple ways,” said Ayotunde Williams, Manager of Product Management (water products) for Belimo.

The goal of the project was to employ the Energy Valves at a building on campus and record the valve’s numerous data points. Those readings would later be compared to a similar building with no relation to the campus suspected of having a less than efficient mechanical system. “Belimo wants to show the strength of the communication you can get with the Energy Valve,” said Williams.

“The information transfer via BACnet and the points of data can be used to understand how well the system is performing. Overall, we can end up using the data to even predict how much money a system like this would use in operation.”

So what is the Belimo Energy Valve and what is it capable of recording? The valve is a two-way pressure independent control valve capable of monitoring a variety of data points, including Delta T. Low Delta T can be a major culprit when it comes to system inefficiencies. It puts a strain on HVAC systems and could cause cooling costs to skyrocket. If air-handling are oversized, demand too much water, or foul and degrade with age, low Delta T can occur. When cooling coils are not working up to their potential, the DDC requests more chilled water but the extra water has limited or no cooling effect. This negatively impacts the chiller. In some cases, buildings must install additional chillers to keep up with the water demand. The Belimo Energy Valve can monitor Delta T and maintain a predefined Delta T setpoint which ensures only the necessary amount of chilled water through the system.

The Energy Valve includes temperature sensors to monitor supply and return water for energy 
management. The valve can also document coil performance and prove that it is working to design specifications. A static IP address can be assigned to the valve, giving building operators the ability to log onto the internet with TCP/IP communication and see exactly how 
the valve and system is performing. The IP address can also be assigned to a DDC network with BACnet MS/TP or BACnet IP communication. A technician can check system parameters and make changes to flow rates by simply connecting to the valve with a PC. Tablet devices can also be used to check valve readings while in the field.

“One of the strengths of this valve is that it enables transparency of the heat exchange process – we can see how the cooling load is behaving,” said Williams. “It not only gives you the numbers, but allows you to analyze this data and to understand what these values mean and what has affected these values.”

The Game Plan Automated Building Systems Inc. (ABS), a Belimo Platinum Distributor for many years, was responsible for the installation. The building automation company operates three locations in Glastonbury, CT; Southborough, MA; and Braintree, RI. It has been providing service to southern New England for the past 25 years, and has a roster of high-profile customers, including the headquarters of this large sports complex. ABS was tapped by Belimo to install the Energy Valves, which would be used to record numerous points of data, including water temperature, water flow, and thermal power.

Bill Dauphinee, Project Manager at ABS, coordinated and contracted the individuals responsible for the installation at building no. 4. The building chosen for the project houses broadcasting studios and office spaces. It also shares the heating and cooling capabilities of a chiller plant with two other nearby structures. This chiller plant operates three chillers and has several mechanical redundancies. 

At the top of this main building are two penthouses storing air handlers and controlsBelimoEnergyValve resized 600 equipment. Two Energy Valves were installed in each of the penthouses so that four cooling air handling units were equipped with Energy Valves. This was done in order to impact enough of the capacity and to show the difference in the overall system. It would also help to understand the different effects of the chiller water temperature and cooling.

A total of four Energy Valves replaced older valves, which are now recording flow, temperature, power, energy, and position of the valve. Flow meters were added to measure the overall flow going into the buildings. The installation team also added meters to measure the actual current usage of the three chillers and added CFM meters to measure the velocity of air flowing across the specific air handlers. All of this was done to get the complete overview of what the Energy Valve was doing. Data from the controller was then used to validate that the Energy Valve was providing good comfort and useful data.

Continue to read the entire case study - download now.

New Valve Retrofit Linkage Offers Easy Installation with No Downtime


Belimo releases a larger universal retrofit linkage solution offering quick and easy installation without interruption in service. The new Flanged Globe Valve Linkage (FGVL) will allow users toRetrofit Valve Linkage Solution for Large Globe Valves retrofit their existing 2.5” to 6” globe valves and restore their systems quickly.  The retrofit linkages utilizes the EV, RV and AVK series actuators with forces (up to 1011 lbf) which provides the close offs needed for large globe valves. The linkage boasts a rugged steel and aluminum clamp design with selectable fail-safe position switch on the actuators making installation easy. The FGVL retrofit linkage can adjusts to fit most flanged globe valves regardless of make and model increasing its flexibility with reduced inventory.

“With the success of FGVL’s little bother the UGVL (Universal Globe Valve Linkage) which fits a broad range of ½” to 2” globe valves this seemed to be the next logical step, says Joseph Carcare Product Manager of Belimo’s Retrofit Solutions. This will pave the way to let people Retrofit globe valves ranging from ½” to 6” with just two linkages choices.”

Complete offering is avialable online at For a quick reference download the product brochure.

ZIP Economizer is Certified by the California Energy Commission


The California Energy Commission's energy efficiency standards have saved Californians more than $74 billion since 1977. The savings were calculated bydetermining the energy savings associated with a more efficient building standard. Savings accumulate over time as older equipment is replaced with newer, more efficient models and older buildings replaced with new construction. 

The ZIP Economizer is now certified under the Fault Detection & Diagnostics requirements of the California Energy Commission and exceeded the requirements for air-side economizers.  Detailed test report shows the level of compliance as well the Fault Detection & Diagnostic documentation is available online or you can contact your local Belimo District Sales Manager.

The California Energy Commission Certification Number BZE1245 for the ECON-ZIP-BASE is listed on the CEC website.

Learn more about the ZIP Economizer at or

All Posts